Aplikasi pendeteksi kebocoran gas menggunakan sensor api, sensor gas dan sensor infrared



 


 

1.Tujuan [kembali]

a. Mengetahui sensor flame, sensor infrared dan sensor MQ-2

b. Mengetahui prinsip kerja sensor flame, sensor infrared dan sensor MQ-2

c. Mengetahui dan mampu menggunakan 2 sensor atau lebih pada satu rangkaian

 

2. Alat dan Bahan [kembali]

a. Sensor Infrared

adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra redIR).










b. Sensor Flame

Salah satu detektor yang memiliki fungsi terpenting adalah detektor api.

c. Sensor MQ-2

digunakan untuk mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan output membaca sebagai tegangan analog.






d. Buzzer

berfungsi untuk mengubah getaran listrik menjadi getaran suara.

e Relay

berfungsi sebagai saklar atau switch elektromagnetik.

f. Op Amp

salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik.

g. Transistor NPN

 sebagai saklar penyambung, pemutus dan penguat sinyal.

h. Battery

berfungsi sebagai penyimpan energi listrik dalam bentuk energi kimia.

i. Resistor

adalah komponen elektronika pasif yang berfungsi untuk menghambat dan mengatur arus listrik dalam suatu rangkaian elektronika.

j. Saklar

adalah alat penyambung atau pemutus aliran listrik.

k. Motor DC

alat yang mengubah energi listrik DC menjadi energi mekanik putaran.

l. LED

sebagai sistem pertahanan/pengaman jika ada suatu kebocoran listrik.

m. Ground

sebagai sistem pertahanan/pengaman jika ada suatu kebocoran listrik.


 

3. Dasar Teori [kembali]

a. Sensor Infrared

Infra red (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR).

Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.


Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3:


            Grafik respon sensor infrared


Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.

b. Sensor flame

merupakan salah satu alat instrument berupa sensor yang dapat mendeteksi nilai intensitas dan frekuensi api dengan panjang gelombang antara 760 nm ~ 1100 nm. 

Dalam suatu proses pembakaran pada pembangkit listrik tenaga uap, flame detector dapat mendeteksi hal tersebut dikarenakan oleh komponen-komponen pendukung dari flame detector. Sensor nyala api ini mempunyai sudut pembacaan sebesar 60 derajat, dan beroperasi normal pada suhu 25 – 85 derajat Celcius.

Cara kerja flame detector mampu bekerja dengan baik untuk menangkap nyala api untuk mencegah kebakaran, yaitu dengan mengidentifikasi atau mendeteksi  nyala apiyang dideteksi oleh keberadaan spectrum cahaya infra red maupun ultraviolet dengan menggunakan metode optic kemudian hasil pendeteksian itu akan diteruskan ke Microprosessor yang ada pada unit flame detector akan bekerja untuk membedakan spectrum cahaya yang terdapat pada api yang terdeteksi tersebut dengan sistem delay selama 2-3 detik pada detektor ini sehingga mampu mendeteksi sumber kebakaran lebih dini dan memungkinkan tidak terjadi sumber alarm palsu.

Spesifikasi:

Output= Digital (D0)
Working voltage: 3.3V to 5V
Output format: Digital output (HIGH/LOW)\
Wavelength detection range: 760nm to 1100nm
Using LM393 comparator
Detection angle: About 60 degrees, particularly sensitive to the flame spectrum
Lighter flame detect distance 80cm


Grafik sensor:



c. Sensor MQ-2

Sensor MQ-2 adalah jenis sensor gas yang dapat mendeteksi (sensitiv) LPG, i-butana, alkohol, hidrogen dan asap.

Sensor gas ini tersusun oleh senyawa SnO2 dengan sifat konduktifitas(penghantar) rendah pada udara bersih. Sifat konduktifitas semakin naik jika konsentrasi gas asap semakin tingi di sekitas sensor ini.

Spesifikasi:            

1. Catu daya pemanas   :  5V AC/DC 

2. Catu daya rangkaian :  5V DC

3. Range pengukuran    :  200-5000 ppm untuk LPG, 300-5000 ppm untuk butana, 5000-20000 ppm untuk metana, dan 300-5000 ppm untuk hidrogen

4. Keluaran                   :  Analog (perubahan Tegangan

Sensor ini dapat mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan keluaranya berupa tegangan analog. Sensor ini beroperasi pada suhu -20°C sampai 50°C dan mengkonsumsi arus kurang dari 150 mA pada 5V.

Sensor MQ-2 terdapat 2 masukan tegangan yakni VH dan VC.  VH digunakan untuk tegangan pada pemanas (heater) internal dan VC merupakan tegangan sumber serta memiliki keluaran yang menghasilkan tegangan berupa analog.


grafik mq - 2


Grafik MQ-2

 

d. Buzzer

Pada umumnya, buzzer elektronika ini sering digunakan sebagai alarm karena penggunaannya yang cukup mudah yaitu dengan memberikan tegangan input maka buzzer elektronika akan menghasilkan getaran suara berupa gelombang bunyi yang dapat didengar manusia. Pada dasarnya, setiap buzzer elektronika memerlukan input berupa tegangan listrik yang kemudian diubah menjadi getaran suara atau gelombang bunyi yang memiliki frekuensi berkisar antara 1 - 5 KHz.

Jenis buzzer elektronika yang sering digunakan dan ditemukan dalam rangkaian adalah buzzer yang berjenis Piezoelectric (Piezoelectric Buzzer). Piezoelectric buzzer dapat digunakan pada tegangan listrik sebesar 6 volt hingga 12 volt dan dengan tipikal arus sebesar 25 mA. Buzzer yang termasuk dalam keluarga Transduser ini sering disebut juga dengan Beeper.

 

fungsi buzzer elektronika :

·            Sebagai bel rumah

·            Alarm pada berbagai peralatan

·            Peringatan mundur pada truk

·            Komponen rangkaian anti maling

·            Indikator suara sebagai tanda bahaya atau yang lainnya

·            Timer

·            Dan lain-lain

Pada dasarnya, prinsip kerja dari buzzer elektronika hampir sama dengan loud speaker dimana buzzer juga terdiri dari kumparan yang terpasang secara diafragma. Ketika kumparan tersebut dialiri listrik maka akan menjadi elektromagnet sehingga mengakibatkan kumparan tertarik ke dalam ataupun ke luar tergantung dari arah arus dan polaritas magnetnya. Karena kumparan dipasang secara diafragma maka setiap kumparan akan menggerakkan diafragma tersebut secara bolak-balik sehingga membuat udara bergetar yang akan menghasilkan suara.

 

 

e Relay

Relay merupakan komponen elektronika electromechanical yang berbentuk dalam sebuah saklar atau switch yang beroperasi dalam listrik yang terdiri dari dua bagian yaitu Coil yang disebut (elektromagnetik) dan komponen kontak switch atau saklar yang disebut mekanik.


Relay juga memiliki 4 fungsi saat di aplikasikan kedalam rangkaian elektronika.

1.    Fungsi relay saat berada di rangkaian elektronika adalah untuk mengendalikan sirkuit listrik yang bertegangan tinggi dengan memanfaatkan bantuan signal tegangan rendah.

2.    Untuk mengendalikan logic function atau menjalankan fungsi logika.

3.    Memberi fungsi waktu jeda atau function time delay.

4.    Untuk melindungi komponen motor dan komponen lain dari konslet atau kelebihan tegangan yang diakibatkan hal tertentu.


Ada 2 jenis kontak point dari Relay

1.    NC (Normally Close) merupakan kondisi awal sebelum relay diaktifkan dan posisi berada dalam keadaan tertutup (close).

2.    NC (Normally Open) merupakan kondisi awal sebelum relay diaktifkan dan posisi berada dalam keadaan terbuka (open).

 

Relay di atas menggambarkan, iron core (sebuah besi) yang dililit oleh sebuah kumparan coil difungsikan mengendalikan besi iron core tersebut. Saat kumparan diberi arus listrik maka yang terjadi akan menimbulkan gaya elektromagnet yang selanjutnya akan menarik armature untuk pindah yang sebelumnya NC akan menjadi NO menjadikan saklar tersebut menghantarkan arus listrik di posisi NO. dan posisi armature yang sebelumnya NC akan menjadi terbuka (OPEN) yang artinya tidak terhubung. Saat sudah tidak digunakan dan tidak diberi aliran listrik maka armature tersebut akan kembali lagi ke posisi awal NC (Normaly Close) yang artinya tertutup. Sebuah coil yang dipakai untuk menarik contack point dari terbuka menjadi tertutup atau sebaliknya hanya membutuhkan arus listrik yang kecil.

f. Op Amp

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.


Op-Amp memiliki beberapa karakteristik, diantaranya:

1.    Penguat tegangan tak berhingga (AV = )




2.    Impedansi input tak berhingga (rin = )

3.    Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = )

4.    Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)


Grafik input dan output op-amp

g. Transistor NPN

 Transistor adalah sebuah komponen elektronika yang digunakan untuk penguat, sebagai sirkuit pemutus, sebagai penyambung, sebagai stabilitas tegangan, modulasi sinyal dan lain-lain. Fungsi transistor juga sebagai kran listrik yang dimana berdasarkan tegangan inputnya, memungkinkan pengalihat listrik yang akurat yang berasal dari sumber listrik.

Pada transistor npn, pergerakan pembawa Arus Negatif (Elektron) melalui wilayah Basis yang merupakan aksi transistor, karena elektron menyediakan hubungan antara sirkuit Collector dan Emitter. Hubungan antara rangkaian Input dan Output, Fitur aksi transistor karena transistor yang memperkuat properti berasal dari kontrol konsekuen yang diberikan oleh Base pada Collector ke Emitter.





Arus transistor dalam transistor NPN bipolar adalah rasio dari dua arus ini (Ic/ Ib), disebut Gain Arus DC dan simbol dari HFE atau sekarang Beta (β). Nilai β hingga 200 untuk transistor standar, Rasio antara Ic dan Ib menjadi penguat ketika digunakan diwilayah aktif karena Ib menyediakan Input dan Ic Output.

Arus Gain transistor terminal Kolektor dan Emitor, Ic/Ie, disebut Alpha (α), dan merupakan fungsi dari transistor (elektron menyebar di persimpangan). Karena arus emitor adalah jumlah dari arus basis yang sangat kecil ditambah arus kolektor yang sangat besar, nilai alfa (α), dan untuk transistor sinyal daya rendah khas, nilai ini berkisar 0,950 ke 0,999.

                             

Hubungan α dan β dalam Transistor NPN


h. Baterai

Baterai atau elemen kering adalah salah satu alat listrik yang berfungsi sebagai penyimpan energi listrik dan mengeluarkan tegangan dalam bentuk listrik sebagal sumber tegangan). Simbol baterai pada suatu rangkaian listrik dengan tegangan DC atau rangkaian elektronika.


Baterai  terdiri dari Terminal Positif( Katoda) dan Terminal Negatif (Anoda) serta Elektrolit yang berfungsi sebagai penghantar. Output Arus Listrik dari Baterai adalah Arus Searah atau disebut juga dengan Arus DC (Direct Current).


Pada umumnya, Baterai terdiri dari 2 Jenis utama yakni:

·         Baterai Primer  (single use battery)

adalah baterai yang hanya dapat digunakan sekali menggunakan reaksi kimia yang tidak dapat dibalik (irreverable reaction). pada umumnya dijual adalah bateral yang bertegangan istrik 1,5 volt.

 

·         Baterai Sekunder (rechargeable battery)

adalah baterai yang dapat di ulang menggunakan reaksi kimia yang bersifat dapat dibalik (reversible reaction) blasaliya digunakan pada telepon genggam.

 

Baterai sebagai alat untuk menyimpan energi listrik sekaligus sumber tegangan (Catu daya DG) tentu saja juga memiliki nilai hambatan atau resistansi. nilai hambatan tersebut dapat diketahui dengan cara melakukan pengukuran arus dan tegangan pada catu daya tersebut.


Dengan data pengukuran tegangan dan arus maka tabel daya dapat dia dengan menggunakan persamaan berikut:

P = V x I

 

Keterangan :

P = Daya (W)

V = Tegangan yang terukur (V)

I = Arus yang terukur (I)

i. Resistor

Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika. Resistor bersifat resistif dan termasuk salah satu komponen elektronika dalam kategori komponen pasif. Satuan atau nilai resistansi suatu resistor di sebut Ohm dan dilambangkan dengan simbol Omega (Ω). Sesuai hukum Ohm bahwa resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Selain nilai resistansinya (Ohm) resistor juga memiliki nilai yang lain seperti nilai toleransi dan kapasitas daya yang mampu dilewatkannya.



Resistor merupakan salah satu komponen elektronika pasif yang berfungsi untuk  membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai teminal antara dua komponen elektronika. Tegangan pada suatu resistor sebanding dengan arus yang melewatinya (V = I.R).  Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

Cicin warna yang terdapat pada resistor terdiri dari 4 ring 5 dan 6 ring warna. Dari cicin warna yang terdapat dari suatu resistor tersebut memiliki arti dan nilai dimana nilai resistansi resistor dengan kode warna yaitu :


 

1.    Resistor 4 gelang warna

Maka cincin ke 1 dan ke 2 merupakan digit angka, dan cincin kode warna ke 3 merupakan faktor pengali kemudian cincin kode warnake 4 menunjukan nilai toleransi resistor.

2.    Resistor 5 gelang warna

Maka cincin ke 1, ke 2 dan ke 3 merupakan digit angka, dan cincin kode warna ke 4 merupakan faktor pengali kemudian cincin kode warna ke 5 menunjukan nilai toleransi resistor.

3.    Resistor 6 gelang warna

Resistor dengan 6 cicin warna pada prinsipnya sama dengan resistor dengan 5 cincin warna dalam menentukan nilai resistansinya. Cincin ke 6 menentukan coefisien temperatur yaitu temperatur maksimum yang diijinkan untuk resistor tersebut.

Toleransi resistor merupakan perubahan nilai resistansi dari nilai yang tercantum pada badan resistor yang masih diperbolehkan dan dinyatakan resistor dalam kondisi baik. Toleransi resistor merupakan salah satu perubahan karakteristik resistor yang terjadi akibat operasional resistor tersebut. Nilai toleransi resistor ini ada beberapa macam yaitu resistor dengan toleransi kerusakan 1% (resistor 1%), resistor dengan toleransi kesalahan 2% (resistor2%), resistor dengan toleransi kesalahan 5% (resistor 5%) dan resistor dengan toleransi 10% (resistor 10%).

j. Saklar

Saklar listrik adalah suatu komponen atau perangkat yang digunakan untuk memutuskan atau menghubungkan aliran listrik. Saklar yang dalam bahasa Inggris disebut dengan Switch ini merupakan salah satu komponen atau alat listrik yang paling sering digunakan.

Pada dasarnya, sebuah Saklar sederhana terdiri dari dua bilah konduktor (biasanya adalah logam) yang terhubung ke rangkaian eksternal, Saat kedua bilah konduktor tersebut terhubung maka akan terjadi hubungan arus listrik dalam rangkaian. Sebaliknya, saat kedua konduktor tersebut dipisahkan maka hubungan arus listrik akan ikut terputus.

Saklar yang paling sering ditemukan adalah Saklar yang dioperasikan oleh tangan manusia dengan satu atau lebih pasang kontak listrik. Setiap pasangan kontak umumnya terdiri dari 2 keadaan atau disebut dengan “State”. Kedua keadaan tersebut diantaranya adalah Keadaan “Close” atau “Tutup” dan Keadaan “Open” atau “Buka”. Close artinya terjadi sambungan aliran listrik sedangkan Open adalah terjadinya pemutusan aliran listrik.



Berdasarkan dua keadaan tersebut, Saklar pada umumnya menggunakan istilah Normally Open (NO) untuk Saklar yang berada pada keadaan Terbuka (Open) pada kondisi awal. Ketika ditekan, Saklar yang Normally Open (NO) tersebut akan berubah menjadi keadaan Tertutup (Close) atau “ON”. Sedangkan Normally Close  (NC) adalah saklar yang berada pada keadaan Tertutup (Close) pada kondisi awal dan akan beralih ke keadaan Terbuka (Open) ketika ditekan.

Berikut ini adalah Simbol Saklar berdasarkan jumlah Pole dan Throw-nya.

k. Motor DC

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.


Motor DC juga relatif mahal dibanding motor AC. Hubungan antara kecepatan, flux medan dan tegangan kumparan motor DC ditunjukkan dalam persamaan berikut :

Gaya elektromagnetik :      E = K Φ N

Torque :                             T = K Φ Ia

Dimana:

E =gaya elektromagnetik yang dikembangkan pada terminal kumparan motor DC (volt)

Φ = flux medan yang berbanding lurus dengan arus medan.

N = kecepatan dalam RPM (putaran per menit)

T = torque electromagnetik

Ia = arus kumparan motor DC

K = konstanta persamaan

 

 

l. LED

 

Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor.


Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda. Terminal anoda adalah kaki yang lebih panjang sedangkan tterminal katoda memiliki kaki lebih pendek.

Masing-masing  warna LED (Light Emitting Diode) memerlukan tegangan maju (Forward Bias) untuk dapat menyalakannya.


m. Ground  

Ground adalah suatu sistem instalasi listrik untuk melepaskan muatan listrik berlebih dengan cara mengalirkannya ke tanah. Ground betujuan sebagai pelindung terhadap penggunaan peralatan listri pada saat terjadi hal-hal berikut:

·         Kebocoran arus listrik

·         Terjadinya induksi tegangan listrik

·         Isolasi yang kurang baik

·         Melindungi dari listrik statis

·         Melindungi dari tegangan tinggi khususnya petir

·         Sebagai acuan pengukuran tegangan


 

 

4. Prosedur Percobaan [kembali]

Pada saat seseorang memasuki ruangan untuk memperbaiki kompor gas maka sensor infrared mendeteksinya dan berlogika 1 maka akan mengeluarkan tegangan 5 volt lalu akan menuju ke kaki basis karena di kaki basis ada arus maka memicu arus batrai menuju ke kaki kolektor dan di teruskan ke emiter. Arus yang menuju ke kolektor tersebut akan melewati relay sehingga relay aktif dan karena relay aktif maka lamp akan hidup.

Lalu  pada saat memperbaiki kompor gas ternyata ada kesalahan teknis sehingga ada kebocoran gas lalu sensor MQ-2 mendeteksi kebocoran dan berlogika 1 maka mengeluarkan tegangan 5 volt lalu menuju ke kaki basis karena dikaki basis ada arus maka memicu arus batrai menuju kek kaki kolektor dan diteruskan ke emiter. Arus yang menuju ke kolektro tersebut akan melewati relay sehingga relay aktif maka buzzer dan led hidup.

Pada saat kebocoran gas tersebut ternyata timbul percikan api sehingga sensor flame aktif dan berlogika 1 maka mengeluarkan tegangan 5 volt. Dengan tegangan tersebut akan mengalir arus menuju basis Q1, karna adanya arus yang mengalir di basis Q1, memicu mengalirnya arus dari tegangan baterai 9V, lalu melalui relay dan kolektor Q1, karna ada arus yang mengalir di relay, relay akan aktif dan arus dari tegangan baterai 12V akan mengalir ke optocoupler triac, sehingga motor(pompa air) hidup dengan sumber AC dari Vsine.

 

5. Rangkaian [kembali]

a.       Pada saat seseorang masuk ke ruangan.

b.      Pada saat terdeteksi kebocoran gas.

c.       Pada saat ada percikan api.

 


6. Video [kembali]


 

7. Download File [kembali]

Download Video [disini]

Download Rangkaian [disini]

Download Materi [disini]

Download HTML [disini]

Download Datasheet Sensor Infrared [disini]

Download Datasheet Sensor Flame [disini]

Download Datasheet Sensor MQ-2 [disini]

Download Datasheet Buzzer [disini]

Download Datasheet Relay [disini]

Download Datasheet Op-Amp [disini]

Download Datasheet Transistor [disini]

Download Datasheet Baterai [disini]

Download Datasheet Resistor [disini]

Download Datasheet Motor DC [disini]

Download Library Sensor Infrared [disini]

Download Library Sensor Flame [disini]

Download Library Sensor MQ-2 [disini]

 

 [MENUJU AWAL]

 







 

 

Tidak ada komentar:

Posting Komentar